山体阴影#

用阴影图展示一些常见的技巧。

  • 使用带阴影图的颜色条
  • 避免阴影图中的异常值,全范围数据,手动设置范围
  • 一个变量着色,另一个变量着色
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LightSource, Normalize


def display_colorbar():
    """Display a correct numeric colorbar for a shaded plot."""
    y, x = np.mgrid[-4:2:200j, -4:2:200j]
    z = 10 * np.cos(x**2 + y**2)

    cmap = plt.cm.copper
    ls = LightSource(315, 45)
    rgb = ls.shade(z, cmap)

    fig, ax = plt.subplots()
    ax.imshow(rgb, interpolation='bilinear')

    # Use a proxy artist for the colorbar...
    im = ax.imshow(z, cmap=cmap)
    im.remove()
    fig.colorbar(im, ax=ax)

    ax.set_title('Using a colorbar with a shaded plot', size='x-large')


def avoid_outliers():
    """Use a custom norm to control the displayed z-range of a shaded plot."""
    y, x = np.mgrid[-4:2:200j, -4:2:200j]
    z = 10 * np.cos(x**2 + y**2)

    # Add some outliers...
    z[100, 105] = 2000
    z[120, 110] = -9000

    ls = LightSource(315, 45)
    fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4.5))

    rgb = ls.shade(z, plt.cm.copper)
    ax1.imshow(rgb, interpolation='bilinear')
    ax1.set_title('Full range of data')

    rgb = ls.shade(z, plt.cm.copper, vmin=-10, vmax=10)
    ax2.imshow(rgb, interpolation='bilinear')
    ax2.set_title('Manually set range')

    fig.suptitle('Avoiding Outliers in Shaded Plots', size='x-large')


def shade_other_data():
    """Demonstrates displaying different variables through shade and color."""
    y, x = np.mgrid[-4:2:200j, -4:2:200j]
    z1 = np.sin(x**2)  # Data to hillshade
    z2 = np.cos(x**2 + y**2)  # Data to color

    norm = Normalize(z2.min(), z2.max())
    cmap = plt.cm.RdBu

    ls = LightSource(315, 45)
    rgb = ls.shade_rgb(cmap(norm(z2)), z1)

    fig, ax = plt.subplots()
    ax.imshow(rgb, interpolation='bilinear')
    ax.set_title('Shade by one variable, color by another', size='x-large')

display_colorbar()
avoid_outliers()
shade_other_data()
plt.show()

脚本总运行时间:(0分3.166秒)

由 Sphinx-Gallery 生成的画廊