使用 RangeSlider 对图像进行阈值处理#

使用 RangeSlider 小部件来控制图像的阈值。

RangeSlider 小部件的使用方式与小部件类似widgets.Slider 。主要区别在于 RangeSlider 的val属性是浮点元组而不是单个浮点数。(lower val, upper val)

有关使用 a控制单个浮点数的示例,请参见Slider 。Slider

有关捕捉到离散值的示例,请参阅将滑块Slider捕捉到离散值。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import RangeSlider

# generate a fake image
np.random.seed(19680801)
N = 128
img = np.random.randn(N, N)

fig, axs = plt.subplots(1, 2, figsize=(10, 5))
fig.subplots_adjust(bottom=0.25)

im = axs[0].imshow(img)
axs[1].hist(img.flatten(), bins='auto')
axs[1].set_title('Histogram of pixel intensities')

# Create the RangeSlider
slider_ax = fig.add_axes([0.20, 0.1, 0.60, 0.03])
slider = RangeSlider(slider_ax, "Threshold", img.min(), img.max())

# Create the Vertical lines on the histogram
lower_limit_line = axs[1].axvline(slider.val[0], color='k')
upper_limit_line = axs[1].axvline(slider.val[1], color='k')


def update(val):
    # The val passed to a callback by the RangeSlider will
    # be a tuple of (min, max)

    # Update the image's colormap
    im.norm.vmin = val[0]
    im.norm.vmax = val[1]

    # Update the position of the vertical lines
    lower_limit_line.set_xdata([val[0], val[0]])
    upper_limit_line.set_xdata([val[1], val[1]])

    # Redraw the figure to ensure it updates
    fig.canvas.draw_idle()


slider.on_changed(update)
plt.show()
像素强度直方图

参考

此示例中显示了以下函数、方法、类和模块的使用:

由 Sphinx-Gallery 生成的画廊